ORIGINAL FILE ORIGIN. LAW OFFICES HALEY, BADER & POTTS SUITE 600 2000 M STREET, N.W. WASHINGTON, D.C. 20036-3374 (202) 331-0606 TELECOPIER (202) 296-8679 August 28, 1992 WILLIAM J. POTTS, JR. RICHARD M. RIEHL SUSAN H. ROSENAU DAWN M. SCIARRINO (NY) LEE W. SHUBERT HENRY A. SOLOMON RICHARD H. STRODEL JAMES M. TOWARNICKY KATHLBEN VICTORY MELODIE A. VIRTUE LARRY D. SUMMERVILLE BROADCAST ANALYST Andrew G. Haley (1904-1966) Ms. Donna R. Searcy Secretary Federal Communications Commission 1919 M Street, N.W. Washington, D.C. 20554 RECEIVED AUG 28 1992 Federal Communications Commission Office of the Secretary Re: MM Docket 92-98 File No. BPED-910412MC Reading, Ohio Dear Ms. Searcy: MICHAEL H. BADER WILLIAM J. BYRNES JAMES B. DUNSTAN John Wells King DAVID G. O'NEIL JOHN M. PELKEY KENNETH A. COX MARY PRICE TAYLOR THEODORE D. KRAMER MARY A. MCREYNOLDS Benjamin J. Lambiotte JOHN CRIGLER Transmitted herewith, on behalf of Southwestern Ohio Seniors' Services, Inc. are the original and six copies of an Errata to the amendment to above-reference application filed on August 24, 1992. If there are any questions concerning this matter, kindly communicate directly with this office. Very truly yours, Dawn M. Sciarrino DMS: dms Enclosures (7) No. of Copies rec'd_____ List A B C D E AUG 28 1992 # Before the FEDERAL COMMUNICATIONS COMMISSION Washington, D.C. 20554 Federal Communications Commission Office of the Secretary In re Applications of THE PRESIDENT AND BOARD OF TRUSTEES OF THE MIAMI UNIVERSITY SOUTHWESTERN OHIO SENIORS' SERVICES, INC. For Construction Permit for a new Non-commercial FM Station on Channel 207A at Reading, Ohio MM Docket 92-98 File No. BPED-8990530MA File No. BPED-990530MA File No. BPED-910412MC To: The Honorable John M. Frysiak Administrative Law Judge ### Errata to Amendment Southwestern Ohio Seniors' Services, Inc. ("SOSSI"), by its attorneys, hereby submits the attached errata to its amendment filed on August 24, 1992. In support thereof the following is stated: 1. The amendment filed on August 24, 1992, seeks to substitute the engineering proposal previously submitted by The President and Board of Trustees of The Miami University ("University") for the proposal by SOSSI. Part of the amendment, a corrective amendment filed by the University on December 20, 1991, was inadvertently omitted from SOSSI's amendment filed on August 24, 1992. Pursuant to a settle- ment agreement between the parties, submitted concurrently therewith, SOSSI agreed to amend its application to include all of the University's engineering proposal in return for granting University an option and right of first refusal. 2. The material contained in the errata was inadvertently omitted and does not affect the proposed amendment's compliance with the test of Erwin O'Connor Broadcast-ing. Co., 22 FCC 2d 140 (Rev.Bd. 1970). WHEREFORE, the premises considered, Southwestern Ohio Seniors' Services, Inc. respectfully requests that the Presiding Judge accept the errata to the amendment filed August 24, 1992 and that he accept that amendment. Respectfully submitted, Southwestern Ohio Seniors' Services, Inc. HALEY, BADER & POTTS Suite 600 2000 M Street, N.W. Washington, D.C. 20036 202/331-0606 August 28, 1992 Lee W. Shubert Dawn M. Sciarrino Its Attorneys # CORRECTIVE AMENDMENT FOR APPLICATION FOR CONSTRUCTION PERMIT FILE NO. BPED-890530MA FOR A NEW NCE FM STATION IN READING, OHIO BY THE MIAMI UNIVERSITY, OXFORD, OHIO ### ITEMS CHANGED BY THIS AMENDMENT: - 1. ERP from 1.50 to 1.00 kW for both horizontal and vertical - 2. Antenna Azimuthal Composite Antenna Pattern to Figure 1 - 3. Antenna Tabular Pattern Data to Table 1 - 4. Antenna Maximum to Minimum Ratio from 13.32 dB to 14.95 dB - 5. 1 mV/m Contour Distances to | RECEIVED | 7.4 km
5.1 | 0°
45 | |-------------------------|---------------|------------| | | 11.6 | 90 | | DEC 2 1 1990 | 11.9 | 135 | | Federal Communication | 15.4
11.2 | 180
225 | | Office of the Secretary | 9.5 | 270 | | | 7.3 | 315 | 6. 1 mV/m Contour Area from 453.8 sq. km. to 350.9 sq. km. DISCUSSION: This corrective amendment for the application by The Miami University in Oxford, Ohio for a new Noncommercial Educational FM Broadcast Station in Reading, Ohio under File No. BPED-890530MA provides a minor modification to the proposed Reading antenna pattern and peak effective radiated power to eliminate the possibility of overlaps when the application is evaluated using the Commission's computer-generated contour overlap study. The amendment also adds a slight margin between the proposed Reading contours and the relevant co- and adjacent station contours to allow for differences in computational methods. The calculations on which this amendment is based derive from the May 1, 1984 30-second point elevation terrain data base produced by the National Geophysical Data Center (NGDC). Since the May 1, 1984 issue corrected several errors in the data base, we request that the Commission use the May 1, 1984 issue or later if the Commission bases their evaluation on NGDC 30-second data. Recent discussions with the Commission's engineering staff revealed the potential for some minor disagreements between the Commission's computer-generated contour overlap study and the engineering data prepared by us for the Reading application. These disagreements are believed resolved in this corrective amendment. We have introduced slight modifications in the proposed Reading azimuthal composite antenna pattern and reduced the peak effective radiated power from the originally proposed 1.50 kW to the presently proposed 1.00 kW. In addition, we have restructured the presentation of the required tabular azimuthal antenna pattern data to provide ten critical pattern azimuths (including maxima and minima) in a common table with data specified at ten degree points. We believe these changes bring the resulting Reading contours into compliance with current FCC Rules when evaluated using the Commission's computer-generated contour overlap program and the current 30-second data base. As a result of these changes, the predicted distances to the 1 mV/m contour and the 1 mV/m contour area change as noted above. The modified proposed pattern relative field is shown graphically in Figure 1. The corresponding tabular data is given in Table 1. In Table 1, in addition to entries provided at ten degree intervals, critical pattern azimuths (including maxima and minima) are included and marked with asterisks. It should be noted that the relative fields specified at 50, 90, 180, 200, and 230 degrees are also critical, but since they are part of the normal ten degree data they are not identified with asterisks. A total of ten critical azimuths are specified, not counting the points at 50, 90, 180, 200, and 230 degrees. Should the Commission desire, the data in Table 1 can be provided at finer intervals up to 0.5 degree. As noted in the application for construction permit, the critical contours are the WLHS 1 mV/m contour, the WOBO 1 mV/m $\,$ contour, the WNKU 1 and 10 mV/m contours, and the WFPL 0.1 mV/m contour. These contours are presented herein in detail. Table 2 shows that the proposed Reading 100 mV/m contour does not overlap the WLHS 1 mV/m contour. Table 3 shows that the proposed Reading 100 mV/m contour does not overlap the WOBO 1 mV/m contour. Table 4 shows that the proposed Reading 10 mV/m contour does not overlap the WNKU 1 mV/m contour and that the proposed Reading 1 mV/m contour. Table 5 shows that the proposed Reading 1 mV/m contour does not overlap the WFPL 0.1 mV/m contour. The file number used for each table is given in the title for that particular table. By incorporating this amended pattern into the Reading application for construction permit, we believe the application by The Miami University meets all the current requirements for antenna directionality, lack of interference to other stations, and lack of interference to the proposed station when evaluated using the Commission's computer-generated contour overlap program. The application continues to demonstrate that the proposed Reading station meets all the current requirements for lack of interference to TV Channel 6 and lack of environmental impact, and complies with current guidelines for human exposure to radiofrequency radiation, since all powers in all pertinent directions are less than contained in the original application. The terrain data used to make the calculations in Tables 2 through 5 is given in Tables 6 through 10. This data is based on the height of the radiation center above mean sea level (RCAMSL). Radial average elevations are calculated using the May 1, 1984 30-second point elevation terrain data base produced by the National Geophysical Data Center (NGDC). As noted at the beginning of this amendment, it is important that earlier issues of the 30-second NGDC data base not be used to calculate the contour distances. ### CERTIFICATION Louis A. Williams, Jr. certifies that he is a consulting engineer doing business since 1970 as Louis A. Williams, Jr. and Associates with offices at 2092 Arrowood Place, Cincinnati, Ohio 45231. He holds a degree of Bachelor of Science in Humanities and Engineering from the Massachusetts Institute of Technology. He is a licensed Professional Engineer in Ohio (#33727) and Kentucky (#7374) and holds a general Radiotelephone license (PG-19-19343). The foregoing report entitled "Corrective Amendment for Application for Construction Permit File no. BPED-890530MA for a New NCE FM Station in Reading, Ohio by The Miami University, Oxford, Ohio" was prepared by him personally or under his supervision and is true and accurate to the best of his belief and knowledge. WILLIAMS, JR. 23 Original stamped in purple. Louis A. Williams, Jr., P.E. Date: De comber 18, 1990 FIGURE 1 MODIFIED PROPOSED READING AZIMUTH PATTERN Channel 207 Louis A. Williams, Jr. and Associates December 1990 TABLE 1 MODIFIED PROPOSED READING COMPOSITE ANTENNA PATTERN WITH A TOTAL OF TEN EXTRA AZIMUTHS INCLUDING MAXIMA AND MINIMA | | | INCLUDING | MAXIMA AND MINIMA | | |-----|------------|---------------|-------------------|--------| | | Azimuth | Relative | Free Space Field | ERP | | | (deq.) | <u> Field</u> | (mV/m at 1 mile) | (dBk) | | | 0 | 0.1789 | 25 | -14.95 | | * | 3 | 0.1789 | 25 | -14.95 | | | 10 | 0.1919 | 26 | -14.34 | | | 20 | 0.2106 | 29 | -13.53 | | | 30 | 0.2292 | 32 | -12.79 | | | 40 | 0.2479 | 34 | -12.12 | | | 50 | 0.2665 | 37 | -11.49 | | | 60 | 0.3355 | 46 | -9.49 | | | 70 | 0.4224 | 58 | -7.49 | | | 80 | 0.5317 | 73 | -5.49 | | * | 87 | 0.6247 | 86 | -4.09 | | | 90 | 0.5831 | 80 | -4.69 | | | 100 | 0.5831 | 80 | -4.69 | | | 110 | 0.5831 | 80 | -4.69 | | | 120 | 0.5831 | 80 | -4.69 | | * | 129 | 0.5831 | 80 | -4.69 | | | 130 | 0.5967 | 82 | -4.49 | | | 140 | 0.7512 | 103 | -2.49 | | | 150 | 0.9457 | 130 | -0.49 | | * | 156 | 1.0000 | 138 | 0.00 | | | 160 | 0.9817 | 135 | -0.16 | | | 170 | 0.7798 | 107 | -2.16 | | * | 173.4 | 0.7211 | 99 | -2.84 | | • | 180 | 0.6928 | 95 | -3.19 | | * | 183.3 | 0.7483 | 103 | -2.52 | | | 190 | 0.6419 | 88 | -3.85 | | | 200 | 0.5099 | 70 | -5.85 | | | 210 | 0.4324 | 60 | -7.28 | | | 220 | 0.3549 | 49 | -9.00 | | * | 223 | 0.3317 | 46 | -9.59 | | ••• | 230 | 0.3317 | 46 | -9.59 | | | 240 | 0.4176 | 57 | -7.59 | | | 250 | 0.5257 | 72 | -5.59 | | | 260 | 0.6618 | 91 | -3.59 | | * | 263.1 | 0.7107 | 98 | -2.97 | | • | 270 | 0.6062 | 83 | -4.35 | | | 280 | 0.4815 | 66 | -6.35 | | | 290 | 0.3825 | 53 | -8.35 | | | 300 | 0.3038 | 42 | -10.35 | | * | 306 | 0.2646 | 36 | -11.55 | | - | 310 | 0.2576 | 35 | -11.78 | | | 320 | 0.2401 | 33 | -12.39 | | | 330 | 0.2226 | 31 | -13.05 | | | | 0.2226 | 28 | -13.76 | | | 340 | | 26 | -14.53 | | | 350
355 | 0.1876 | | -14.95 | | * | 355 | 0.1789 | 25 | -14.95 | TABLE 2 # WLHS VS. PROPOSED READING CONTOURS FOR WLHS FILE BLED820521AW | Bearing
from WLHS
(Degrees) | WLHS
Effective Height
(Meters) | WLHS
F(50,50)
1 mV/m
(km) | Bearing from
Proposed to
WLHS 1 mV/m
(Degrees) | Distance from
Proposed to
WLHS 1 mV/m
(km) | Proposed
Effective
Height
(Meters) | Proposed
ERP
(kW) | Proposed
F(50,10)
100 mV/m
(km) | Margin
(km) | |-----------------------------------|--------------------------------------|------------------------------------|---|---|---|-------------------------|--|----------------| | N202.0E | 118.7 | 11.2 | N 76.8E | 1.4 | 71.3 | 0.244 | 1.1 | 0.3 | | 202.5 | 119.5 | 11.2 | 74.4 | 1.3 | 71.0 | 0.219 | 1.0 | 0.3 | | 203.0 | 120.1 | 11.2 | 71.7 | 1.3 | 67.2 | 0.193 | 1.0 | 0.3 | | 203.5 | 120.8 | 11.3 | 72.1 | 1.1 | 67.7 | 0.197 | 1.0 | 0.3 | | 204.0 | 121.4 | 11.3 | 68.5 | 1.1 | 63.9 | 0.167 | 0.9 | 0.1 | | 204.5 | 122.1 | 11.3 | 64.4 | 1.0 | 62.8 | 0.138 | 0.8 | | | 205.0 | 122.7 | 11.4 | 63.5 | 0.8 | 61.8 | 0.132 | 0.8 | 0.2 | | 205.5 | 123.4 | 11.4 | 57.9 | 0.8 | 53.3 | 0.102 | 0.8 | 0.0 | | 206.0 | 124.2 | 11.4 | 51.2 | 0.7 | 39.3 | 0.075 | 0.6 | 0.1 | | 206.5 | 125.0 | 11.5 | 46.7 | 0.6 | 32.0 | 0.073 | | 0.1 | | 207.0 | 126.0 | 11.5 | 37.4 | 0.6 | 33.5 | 0.059 | 0.6 | 0.0 | | 207.5 | 127.1 | 11.5 | 27.2 | 0.6 | 41.4 | 0.059 | 0.5 | 0.1 | | 208.0 | 128.5 | 11.6 | 15.3 | 0.5 | 71.5 | 0.041 | 0.5 | 0.1 | | 208.2 | 129.0 | 11.6 | 10.4 | 0.5 | 71.3
78.8 | | 0.4 | 0.1 | | 208.4 | 129.6 | 11.7 | 1.0 | 0.4 | 76.6
88.6 | 0.037 | 0.4 | 0.1 | | 208.6 | 130.3 | 11.7 | 356.3 | 0.4 | | 0.032 | 0.4 | 0.0 | | 208.8 | 130.9 | 11.7 | 351.9 | | 96.6 | 0.032 | 0.4 | 0.0 | | 209.0 | 131.6 | 11.7 | 348.0 | 0.5 | 95.3 | 0.034 | 0.4 | 0.1 | | 209.5 | 133.3 | | | 0.5 | 90.6 | 0.037 | 0.4 | 0.1 | | 210.0 | | 11.8 | 331.3 | 0.5 | 72.8 | 0.049 | 0.5 | 0.0 | | 210.5 | 135.0 | 11.9 | 316.6 | 0.6 | 65.7 | 0.061 | 0.5 | 0.1 | | 211.0 | 136.7 | 12.0 | 305.4 | 0.6 | 54.9 | 0.072 | 0.6 | 0.0 | | | 138.4 | 12.0 | 304.6 | 0.7 | 55.2 | 0.075 | 0.6 | 0.1 | | 211.5 | 139.9 | 12.1 | 297.5 | 0.8 | 58.1 | 0.104 | 0.7 | 0.1 | | 212.0 | 141.3 | 12.2 | 291.9 | 1.0 | 46.7 | 0.134 | 0.8 | 0.2 | | 212.5 | 142.5 | 12.2 | 293.1 | 1.1 | 50.0 | 0.127 | 0.8 | 0.3 | | 213.0 | 143.6 | 12.3 | 289.1 | 1.2 | 41.3 | 0.153 | 0.9 | 0.3 | TABLE 3 ## WOBO VS. PROPOSED READING CONTOURS FOR WOBO FILE BPED-860613MD | Bearing
from WOBO
(Degrees) | WOBO
Effective Height
(Meters) | WOBO
ERP
(kw) | WOBO
F(50,50)
1 mV/m
(km) | Bearing from
Proposed to
WOBO 1 mV/m
(Degrees) | Distance from
Proposed to
WOBO 1 mV/m
(km) | Proposed
Effective
Height
(Meters) | Proposed
ERP
(kW) | Proposed
F(50,10)
100 mV/m
(km) | Margin
<u>(km)</u> | |-----------------------------------|--------------------------------------|---------------------|------------------------------------|---|---|---|-------------------------|--|-----------------------| | N299.0E | 183.4 | 2.87 | 31.5 | N153.7E | 3.0 | 95.8 | 1.00 | 1.6 | 1.4 | | 300.0 | 186.7 | 2.93 | 31.9 | 148.0 | 2.4 | 80.9 | 0.816 | 1.6 | 1.4 | | 301.0 | 189.4 | 3.00 | 32.3 | 138.0 | 1.8 | 65.8 | 0.515 | 1.6 | 0.8
0.2 | | 301.2 | 189.8 | 3.01 | 32.4 | 135.2 | 1.6 | 62.6 | 0.452 | 1.5 | | | 301.4 | 190.1 | 3.02 | 32.4 | 131.4 | 1.6 | 62.0 | 0.380 | 1.4 | 0.1 | | 301.6 | 190.4 | 3.03 | 32.5 | 127.8 | 1.5 | 59.1 | 0.340 | 1.3 | 0.2 | | 301.7 | 190.5 | 3.03 | 32.5 | 125.7 | 1.5 | 60.1 | 0.340 | 1.3 | 0.2
0.2 | | 301.8 | 190.6 | 3.03 | 32.5 | 123.4 | 1.5 | 62.8 | 0.340 | | | | 302.0 | 190.7 | 3.04 | 32.5 | 119.1 | 1.5 | 69.6 | | 1.3 | 0.2 | | 302.2 | 190.8 | 3.06 | 32.6 | 114.3 | 1.4 | 69.2 | 0.340 | 1.3 | 0.2 | | 302.4 | 190.9 | 3.07 | 32.6 | 109.7 | 1.4 | 67.3 | 0.340 | 1.3 | 0.1 | | 302.6 | 190.9 | 3.08 | 32.7 | 104.2 | | | 0.340 | 1.3 | 0.1 | | 302.8 | 190.8 | 3.10 | 32.7 | 99.8 | 1.4
1.4 | 63.6 | 0.340 | 1.3 | 0.1 | | 303.0 | 190.7 | 3.11 | 32.7 | 95. 6 | | 68.1 | 0.340 | 1.3 | 0.1 | | 303.2 | 190.6 | 3.12 | 32.7 | 91.8 | 1.4 | 72.8 | 0.340 | 1.3 | 0.1 | | 303.4 | 190.4 | 3.12 | 32.7 | | 1.5 | 68.5 | 0.340 | 1.3 | 0.2 | | 303.5 | 190.3 | 3.13 | 32.7 | 88.2 | 1.6 | 68.1 | 0.369 | 1.3 | 0.3 | | 303.6 | 190.2 | 3.13 | 32.7 | 86.5 | 1.6 | 66.8 | 0.381 | 1.4 | 0.2 | | 303.8 | 190.0 | 3.13 | 32.7
32.7 | 84.9 | 1.6 | 65.6 | 0.354 | 1.3 | 0.3 | | 304.0 | 189.8 | 3.14 | | 81.9 | 1.7 | 63.9 | 0.309 | 1.2 | 0.5 | | 305.0 | 188.3 | 3.14 | 32.7 | 79.2 | 1.8 | 66.4 | 0.273 | 1.2 | 0.6 | | 306.0 | 186.2 | 3.19 | 32.7 | 68.8 | 2.2 | 64.1 | 0.169 | 0.9 | 1.3 | | 555.0 | 100.2 | 3.24 | 32.7 | 62.2 | 2.7 | 60.3 | 0.125 | 0.8 | 1.9 | TABLE 4 WNKU VS. PROPOSED READING CONTOURS FOR WNKU FILE BMPED-84111916 | Bearing
from WNKU
(Degrees) | WNKU
Effective Height
(Meters) | WNKU
ERP
(kw) | WNKU
F(50,50)
1 mV/m
(km) | Bearing from
Proposed to
WNKU 1 mV/m
(Degrees) | Distance from
Proposed to
WNKU 1 mV/m
(km) | Proposed
Effective
Height
(Meters) | Proposed
ERP
(kW) | Proposed
F(50,10)
10 mV/m
(km) | Margin
(km) | |-----------------------------------|--------------------------------------|---------------------|-------------------------------------|--|---|---|-------------------------|---|-----------------------| | N345E | 115.0 | 0.941 | 19.7 | N260.1E | 8.1 | 35.9 | 0.440 | 2.8 | 5.3 | | 350 | 114.4 | 0.750 | 18.5 | 250.1 | 6.5 | 43.1 | 0.278 | 2.8 | 3.7 | | 355 | 107.5 | 0.635 | 17.1 | 232.2 | 5.5 | 108.0 | 0.122 | 3.5 | 2.0 | | 0 | 98.9 | 0.529 | 15.5 | 210.3 | 5.7 | 94.7 | 0.185 | 3.7 | 2.0 | | 5 | 92.2 | 0.389 | 13.8 | 194.1 | 6.9 | 92.9 | 0.341 | 4.3 | 2.6 | | 10 | 93.3 | 0.389 | 13.9 | 183.9 | 6.8 | 88.4 | 0.546 | 4.7 | 2.1 | | 15 | 97.8 | 0.389 | 14.2 | 173.2 | 6.8 | 102.9 | 0.525 | 5.0 | 1.8 | | 20 | 102.5 | 0.389 | 14.6 | 162.4 | 7.0 | 105.4 | 0.863 | 5.8 | 1.2 | | 25 | 116.1 | 0.389 | 15.6 | 149.3 | 7.3 | 82.9 | 0.866 | 5.1 | 2.2 | | 30 | 130.4 | 0.529 | 18.1 | 127.5 | 7.8 | 59.0 | 0.340 | 3.4 | 4.4 | | Bearing
from WNKU
(Degrees) | WNKU
Effective Height
(Meters) | WNKU
ERP
(kW) | WNKU
F(50,10)
10 mV/m
(km) | Bearing from
Proposed to
WNKU 10 mV/m
(Degrees) | Distance from Proposed to WNKU 10 mV/m(km) | Proposed
Effective
Height
(Meters) | Proposed
ERP
(kW) | Proposed
F(50,50)
1 mV/m
(km) | Margin
<u>(km)</u> | | N2OE | 102.5 | 0.389 | 4.6 | N184.6E | 16.2 | 85.5 | 0.528 | 14.3 | 1.9 | | 25 | 116.1 | 0.389 | 4.9 | 182.9 | 16.0 | 92.4 | 0.549 | 15.1 | 0.9 | | 27.5 | 126.1 | 0.389 | 5.1 | 181.9 | 15.9 | 96.5 | 0.524 | 15.2 | 0.7 | | 30 | 130.4 | 0.529 | 5.7 | 180.1 | 15.5 | 102.6 | 0.482 | 15.4 | 0.1 | | 35 | 130.6 | 0.635 | 5.9 | 178.1 | 15.6 | 100.1 | 0.491 | 15.3 | 0.3 | | 40 | 131.7 | 0.750 | 6.2 | 175.9 | 15.7 | 100.1 | 0.505 | 15.4 | 0.3 | | 45 | 127.4 | 0.941 | 6.5 | 173.8 | 15.9 | 102.9 | 0.518 | 15.8 | 0.1 | | 50 | 115.3 | 1.229 | 6.6 | 172.3 | 16.3 | 102.4 | 0.547 | 16.0 | 0.3 | | 55 | 101.3 | 1.470 | 6.5 | 171.6 | 16.9 | 102.0 | 0.565 | 16.1 | 0.8 | | 60 | 88.8 | 1.825 | 6.4 | 171.2 | 17.4 | 101.6 | 0.575 | 16.1 | 1.3 | TABLE 5 # WFPL VS. PROPOSED READING CONTOURS FOR WFPL FILE BLED7838 | Bearing
from WFPL
(Degrees) | WFPL
Effective Height
(Meters) | WFPL
F(50,10)
O.1 mV/m
(km) | Bearing from
Proposed to
WFPL 0.1 mV/m
(Degrees) | Distance from
Proposed to
WFPL 0.1 mV/m
(km) | Proposed
Effective
Height
(Meters) | Proposed
ERP
(kV) | Proposed
F(50,50)
1 mV/m
(km) | Margin
<u>(km)</u> | |-----------------------------------|--------------------------------------|--------------------------------------|---|---|---|-------------------------|--|-----------------------| | N44.6E | 102.5 | 146.8 | N246.3E | 12.1 | 59.5 | 0.233 | 10.0 | | | 44.8 | 102.6 | 146.8 | 244.0 | 11.9 | 71.3 | 0.210 | | 2.1 | | 45.0 | 102.7 | 146.9 | 241.7 | 11.7 | 84.8 | 0.189 | 10.5 | 1.4 | | 45.2 | 102.8 | 146.9 | 239.3 | 11.6 | 93.1 | 0.169 | 11.1 | 0.6 | | 45.4 | 102.8 | 146.9 | 236.8 | 11.5 | 96.5 | | 11.3 | 0.3 | | 45.6 | 102.9 | 146.9 | 234.3 | 11.4 | | 0.151 | 11.2 | 0.3 | | 45.8 | 102.9 | 146.9 | 231.7 | | 101.6 | 0.134 | 11.2 | 0.2 | | 46.0 | 102.9 | 146.9 | 229.1 | 11.3 | 109.1 | 0.119 | 11.2 | 0.1 | | 46.2 | 102.9 | 146.9 | 226.5 | 11.3 | 114.5 | 0.110 | 11.2 | 0.1 | | 46.4 | 102.9 | 146.9 | | 11.3 | 115.9 | 0.110 | 11.3 | 0.0 | | 46.6 | 102.9 | | 223.9 | 11.3 | 112.1 | 0.110 | 11.1 | 0.2 | | 46.8 | 102.8 | 146.9 | 221.3 | 11.3 | 108.2 | 0.119 | 11.2 | 0.1 | | 47.0 | | 146.9 | 218.7 | 11.4 | 103.9 | 0.133 | 11.3 | 0.1 | | 47.2 | 102.8 | 146.9 | 216.2 | 11.5 | 98.3 | 0.148 | 11.2 | 0.3 | | | 102.7 | 146.9 | 213.7 | 11.6 | 95.9 | 0.163 | 11.4 | 0.2 | | 47.4 | 102.6 | 146.8 | 211.4 | 11.8 | 94.9 | 0.178 | 11.6 | 0.2 | | 47.6 | 102.4 | 146.8 | 209.1 | 12.0 | 94.7 | 0.193 | 11.8 | 0.2 | | 47.8 | 102.2 | 146.8 | 206.8 | 12.2 | 95.4 | 0.209 | 12.0 | 0.2 | | 48.0 | 102.0 | 146.7 | 204.8 | 12.5 | 95.3 | 0.224 | 12.2 | 0.3 | | 48.2 | 101.7 | 146.7 | 202.7 | 12.7 | 96.5 | 0.239 | 12.5 | 0.2 | | 48.4 | 101.4 | 146.6 | 200.8 | 13.0 | 98.2 | 0.254 | 12.8 | 0.2 | | 48.6 | 101.1 | 146.6 | 198.9 | 13.3 | 98.4 | 0.274 | 13.1 | | | 48.8 | 100.7 | 146.5 | 197.2 | 13.6 | 97.4 | 0.296 | 13.2 | 0.2 | | 49.0 | 100.3 | 146.4 | 195.7 | 14.0 | 95.7 | 0.230 | 13.2 | 0.4 | | 49.2 | 99.9 | 146.4 | 194.0 | 14.3 | 92.7 | | | 0.7 | | 49.4 | 99.4 | 146.3 | 192.6 | 14.7 | 88.0 | 0.343 | 13.4 | 0.9 | | 49.6 | 98.9 | 146.2 | 191.3 | 15.0 | 83.8 | 0.366
0.388 | 13.3
13.1 | 1.4
1.9 | # TABLE 6 Louis A. Williams, Jr. and Associates 39-13-23 Latitude: # Cincinnati, Ohio December, 1990 Terrain Averaging Program 30 Second Database Job Title: Proposed Site RCAMSL (m): 288 Longitude: 84-25-57 | Bearing
(Deg-true) | 3-16 km Avg.
Terrain Elev.
(m) | Height Above
Average Terrain
(m) | |-----------------------|--------------------------------------|--| | 1.0 | 199.4 | 88.6 | | 10.4 | 209.2 | 78.8 | | 15.3 | 216.5 | 71.5 | | 27.2 | 246.6 | 41.4 | | 37.4 | 254.5 | 33.5 | | 46.7 | 256.0 | 32.0 | | 51.2 | 248.7 | 39.3 | | 57.9 | 234.7 | 53.3 | | 62.2 | 227.7 | 60.3 | | 63.5 | 226.2 | 61.8 | | 64.4 | 225.2 | 62.8 | | 68.5 | 224.1 | 63.9 | | 68.8 | 223.9 | 64.1 | | 71.7 | 220.8 | 67.2 | | 72.1 | 220.3 | 67.7 | | 74.4 | 217.0 | 71.0 | | 76.8 | 216.7 | 71.3 | | 79.2 | 221.6 | 66.4 | | 81.9 | 224.1 | 63.9 | | 84.9 | 222.4 | 65.6 | | 86.5 | 221.2 | 66.8 | | 88.2 | 219.9 | 68.1 | | 91.8 | 219.5 | 68.5 | | 95.6 | 215.2 | 72.8 | | 99.8 | 219.9 | 68.1 | | 104.2 | 224.4 | 63.6 | | 109.7 | 220.7 | 67.3 | | 114.3 | 218.8 | 69.2 | | 119.1 | 218.4 | 69.6 | | 123.4 | 225.2 | 62.8 | | 125.7 | 227.9 | 60.1 | | 127.5 | 229.0 | 59.0 | | 127.8 | 228.9 | 59.1 | | 131.4 | 226.0 | 62.0 | | 135.2 | 225.4 | 62.6 | | 138.0 | 222.2 | 65.8 | | 148.0 | 207.1 | 80.9 | | 149.3 | 205.1 | 82.9 | | 153.7 | 192.2 | 95.8 | | 162.4 | 182.6 | 105.4 | | 171.2 | 186.4 | 101.6 | | 171.6 | 186.0 | 102.0 | | 172.3 | 185.6 | 102.4 | | 173.2 | 185.1 | 102.9 | | 173.8 | 185.1 | 102.9 | | 175.9 | 187.9 | 100.1 | | 178.1 | 187.9 | 100.1 | | | = - · · · | | # TABLE 6 (Continued) Louis A. Williams, Jr. and Associates Cincinnati, Ohio December, 1990 Terrain Averaging Program 30 Second Database Job Title: Proposed Site RCAMSL (m): 288 Latitude: 39-13-23 Longitude: 84-25-57 | Bearing
(Deg-true) | 3-16 km Avg.
Terrain Elev.
(m) | Height Above Average Terrain (m) | |-----------------------|--------------------------------------|----------------------------------| | 180.1 | 185.4 | 102.6 | | 181.9 | 191.5 | 96.5 | | 182.9 | 195.6 | 92.4 | | 183.9 | 199.6 | 88.4 | | 184.6 | 202.5 | 85.5 | | 191.3 | 204.2 | 83.8 | | 192.6 | 200.0 | 88.0 | | 194.0 | 195.3 | 92.7 | | 194.1 | 195.1 | 92.9 | | 195.7 | 192.3 | 95.7 | | 197.2 | 190.6 | 97.4 | | 198.9 | 189.6 | 98.4 | | 200.8 | 189.8 | 98.2 | | 202.7 | 191.5 | 96.5 | | 204.8 | 192.7 | 95.3 | | 206.8 | 192.6 | 95.4 | | 209.1 | 193.3 | 94.7 | | 210.3 | 193.3 | 94.7 | | 211.4 | 193.1 | 94.9 | | 213.7 | 192.1 | 95.9 | | 216.2 | 189.7 | 98.3
103.9 | | 218.7 | 184.1 | 103.9 | | 221.3 | 179.8 | 112.1 | | 223.9 | 175.9 | 115.9 | | 226.5 | 172.1
173.5 | 114.5 | | 229.1 | 173.5 | 109.1 | | 231.7 | | 108.0 | | 232.2 | 180.0
186.4 | 101.6 | | 234.3 | 191.5 | 96.5 | | 236.8 | 194.9 | 93.1 | | 239.3
241.7 | 203.2 | 84.8 | | 244.0 | 216.7 | 71.3 | | 246.3 | 228.5 | 59.5 | | 250.1 | 244.9 | 43.1 | | 260.1 | 252.1 | 35.9 | | 289.1 | 246.7 | 41.3 | | 291.9 | 241.3 | 46.7 | | 293.1 | 238.0 | 50.0 | | 297.5 | 229.9 | 58.1 | | 304.6 | 232.8 | 55.2 | | 305.4 | 233.1 | 54.9 | | 316.6 | 222.3 | 65.7 | | 331.3 | 215.2 | 72.8 | | 348.0 | 197.4 | 90.6 | | 351.9 | 192.7 | 95.3 | | 356.3 | 191.4 | 96.6 | ## TABLE 7 # Louis A. Williams, Jr. and Associates Cincinnati, Ohio December, 1990 Terrain Averaging Program 30 Second Database Job Title: WLHS RCAMSL (m): 338 Latitude: 39-19-10 Longitude: 84-22-04 | Bearing
(Deg-true) | 3-16 km Avg.
Terrain Elev.
(m) | Height Above
Average Terrain
(m) | |-----------------------|--------------------------------------|--| | 202.0 | 219.3 | 118.7 | | 202.5 | 218.5 | 119.5 | | 203.0 | 217.9 | 120.1 | | 203.5 | 217.2 | 120.8 | | 204.0 | 216.6 | 121.4 | | 204.5 | 215.9 | 122.1 | | 205.0 | 215.3 | 122.7 | | 205.5 | 214.6 | 123.4 | | 206.0 | 213.8 | 124.2 | | 206.5 | 213.0 | 125.0 | | 207.0 | 212.0 | 126.0 | | 207.5 | 210.9 | 127.1 | | 208.0 | 209.5 | 128.5 | | 208.2 | 209.0 | 129.0 | | 208.4 | 208.4 | 129.6 | | 208.6 | 207.7 | 130.3 | | 208.8 | 207.1 | 130.9 | | 209.0 | 206.4 | 131.6 | | 209.5 | 204.7 | 133.3 | | 210.0 | 203.0 | 135.0 | | 210.5 | 201.3 | 136.7 | | 211.0 | 199.6 | 138.4 | | 211.5 | 198.1 | 139.9 | | 212.0 | 196.7 | 141.3 | | 212.5 | 195.5 | 142.5 | | 213.0 | 194.4 | 143.6 | # TABLE 8 Louis A. Williams, Jr. and Associates Cincinnati, Ohio November, 1990 Terrain Averaging Program 30 Second Database Job Title: WOBO RCAMSL (m): 402 Latitude: 39-03-43 Longitude: 84-05-50 | Bearing
(Deg-true) | 3-16 km Avg.
Terrain Elev.
(m) | Height Above Average Terrain (m) | |-----------------------|--------------------------------------|----------------------------------| | 299.0 | 218.6 | 183.4 | | 300.0 | 215.3 | 186.7 | | 301.0 | 212.6 | 189.4 | | 301.2 | 212.2 | 189.8 | | 301.4 | 211.9 | 190.1 | | 301.6 | 211.6 | 190.4 | | 301.7 | 211.5 | 190.5 | | 301.8 | 211.4 | 190.6 | | 302.0 | 211.3 | 190.7 | | 302.2 | 211.2 | 190.8 | | 302.4 | 211.1 | 190.9 | | 302.6 | 211.1 | 190.9 | | 302.8 | 211.2 | 190.8 | | 303.0 | 211.3 | 190.7 | | 303.2 | 211.4 | 190.6 | | 303.4 | 211.6 | 190.4 | | 303.5 | 211.7 | 190.3 | | 303.6 | 211.8 | 190.2 | | 303.8 | 212.0 | 190.0 | | 304.0 | 212.2 | 189.8 | | 305.0 | 213.7 | 188.3 | | 306.0 | 215.8 | 186.2 | # TABLE 9 Louis A. Williams, Jr. and Associates Cincinnati, Ohio November, 1990 Terrain Averaging Program 30 Second Database Job Title: WNKU RCAMSL (m): 302 Latitude: 39-02-21 Longitude: 84-27-57 | Bearing
(Deg-true) | 3-16 km Avg.
Terrain Elev.
(m) | Height Above
Average Terrain
(m) | |-----------------------|--------------------------------------|--| | 0.0 | 203.1 | 98.9 | | 5.0 | 209.8 | 92.2 | | 10.0 | 208.7 | 93.3 | | 15.0 | 204.2 | 97.8 | | 20.0 | 199.5 | 102.5 | | | | 116.1 | | 25.0 | 185.9 | | | 27.5 | 175.9 | 126.1 | | 30.0 | 171.6 | 130.4 | | 35.0 | 171.4 | 130.6 | | 40.0 | 170.3 | 131.7 | | 45.0 | 174.6 | 127.4 | | 50.0 | 186.7 | 115.3 | | 55.0 | 200.7 | 101.3 | | 60.0 | 213.2 | 88.8 | | 345.0 | 187.0 | 115.0 | | 350.0 | 187.6 | 114.4 | | | | | | 355.0 | 194.5 | 107.5 | ## TABLE 10 # Louis A. Williams, Jr. and Associates Cincinnati, Ohio December, 1990 Terrain Averaging Program 30 Second Database Job Title: WFPL RCAMSL (m): 226 Latitude: 38-14-40 Longitude: 85-45-27 | Bearing
(Deg-true) | 3-16 km Avg.
Terrain Elev.
(m) | Height Above Average Terrain (m) | |-----------------------|--------------------------------------|----------------------------------| | 44.6 | 123.5 | 102.5 | | 44.8 | 123.4 | 102.6 | | 45.0 | 123.3 | 102.7 | | 45.2 | 123.2 | 102.8 | | 45.4 | 123.2 | 102.8 | | 45.6 | 123.1 | 102.9 | | 45.8 | 123.1 | 102.9 | | 46.0 | 123.1 | 102.9 | | 46.2 | 123.1 | 102.9 | | 46.4 | 123.1 | 102.9 | | 46.6 | 123.1 | 102.9 | | 46.8 | 123.2 | 102.8 | | 47.0 | 123.2 | 102.8 | | 47.2 | 123.3 | 102.7 | | 47.4 | 123.4 | 102.6 | | 47.6 | 123.6 | 102.4 | | 47.8 | 123.8 | 102.2 | | 48.0 | 124.0 | 102.0 | | 48.2 | 124.3 | 101.7 | | 48.4 | 124.6 | 101.4 | | 48.6 | 124.9 | 101.1 | | 48.8 | 125.3 | 100.7 | | 49.0 | 125.7 | 100.3 | | 49.2 | 126.1 | 99.9 | | 49.4 | 126.6 | 99.4 | | 49.6 | 127.1 | 98.9 | ### **CERTIFICATE OF SERVICE** I, Lucy G. Santiago, a secretary in the law offices of Haley, Bader & Potts, hereby certify that I have on this date, August 28, 1992, sent copies of the foregoing "ERRATA TO AMENDMENT", by first-class, United States mail, postage prepaid, to the following: Honorable John M. Frysiak* Administrative Law Judge Federal Communications Commission 2000 L Street, N.W., Room 223 Washington, D.C. 20554 Robert A. Zauner, Esq.* Hearing Branch Mass Media Bureau 2025 M Street, N.W., Room 7212 Washington, D.C. 20554 Stanley S. Neustadt, Esq. Cohn & Marks 1333 New Hampshire Avenue, N.W. Suite 600 Washington, D.C. 20036 (Counsel for Miami University) *Hand-Delivered